

Tema 6. No metales del Grupo 14: C, Si

Prof. Responsable: José María Moratal Mascarell. Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)

Facultat de Química

Tema 6. No metales del grupo 14: C, Si

Indice

- 1.- Descubrimiento de los elementos
- 2.- Tendencias grupales
- 3.- Química del Carbono
 - Estado natural. Ciclo del carbono
 - Alotropía: obtención, aplicaciones, reactividad
 - Compuestos del carbono
 - óxidos, oxoácidos y oxosales de carbono
 - compuestos con enlace C-N
 - tetrahaluros de carbono
 - carburos y acetiluros

1. Descubrimiento los elementos

- C, Sn y Pb → conocidos desde la Antigüedad
- Carbono
 - hollín de C se utilizaba en el s. VI a. C. como pigmento para tinta negra
- Silicio → aislado por Berzelius (1824)
 - vidrio (un componente es SiO₂) conocido desde el 1500 a.C.
- Germanio(eka-silicio) \rightarrow elemento primordial en desarrollo de transistores
 - C.A.Winkler (1886) \rightarrow análisis mineral raro argirodita Ag_8GeS_6
- Estaño → su obtención se remonta a 3000 a.C.
 - fácil obtención → reducción de SnO₂ con carbón de leña
 - bronce: aleación de Sn y Cu
 - platos y utensilios de estaño eran comunes en el s. XVII
- Plomo → metal más antiguo conocido
 - Pb muy maleable
 - soporte para escritura, vasijas para cocinar, cañerías para fontanería
 - insignia de los Césares se puede ver en algunas cañerías de Pb

3

1. Introducción al Grupo 14

2. Tendencias Grupales

- el ejemplo más notable de discontinuidad en las propiedades entre 1er y el 2º elemento del grupo
 - con cambio más gradual de Si a Pb (con irregularidades)
- C → no metal típico
- Si → no metal (propiedades químicas)
 - propiedades físicas → semimetal
- Ge → semimetal
- Sn y Pb → metales débilmente "electropositivos"
- aspecto físico → metálico
 - excepto el carbono

Elementos del grupo 14.

Arriba (de izquierda a derecha): Silicio y Estaño. Abajo: Carbono (grafito), Germanio y Plomo

> (adaptada de: P. Atkins, L. Jones, Chemistry: Molecules, Matter and Change, 4th ed, W. H. Freeman and Co, 2000)

2. Propiedades atómicas

- •1.- Números atómicos, configuraciones electrónicas
 - isótopos naturales → ¿pocos o varios?
 - números atómicos pares → varios isótopos estables
 - configuraciones electrónicas
 - ¿capa de valencia? \rightarrow ns² np²
 - ¿configuración interna? sólo C y Si → configuración interna de gas noble
 - » Ge y Sn \rightarrow gas noble + d^{10} ; Pb \rightarrow gas noble + f^{14} + d^{10}
 - » afecta a las tendencias en diferentes propiedades como EI, χ , radio covalente ...

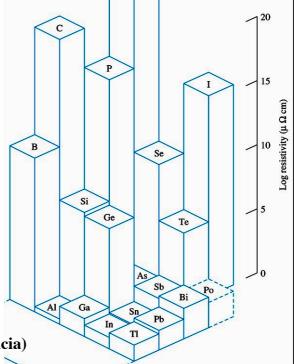
	Z	nº isótopos naturales	configuración electrónica	comentario
$\overline{\mathbf{C}}$	6	2+1	$[He] 2s^2 2p^2$	¹² C, ¹³ C, ¹⁴ C (trazas, radiactivo)
Si	14	3	$[Ne] 3s^2 3p^2$	²⁸ Si, ²⁹ Si, ³⁰ Si
Ge	32	5	$[Ar] 3d^{10} 4s^2 4p^2$	⁷⁰ Ge, ⁷² Ge, ⁷³ Ge, ⁷⁴ Ge, ⁷⁶ Ge
Sn	50	10	[Kr] $4d^{10} 5s^2 5p^2$	Z mágico, mayor nº isótopos estables
Pb	82	4	[Xe] $4f^{14} 5d^{10} 6s^2 6p^2$	el más abundante (52,4%) ²⁰⁸ Pb (Z y N mágicos)

5

2. Propiedades atómicas

- 2.- Energías de Ionización, χ, radio covalente
 - EI's, χ y radio covalente → variación con irregularidades
 - las irregularidades tienen el mismo origen
 - » apantallamiento menos efectivo de los electrones 3d (Ge) y 4f (Pb) (mayor $Z_{\rm ef}$)
- C [He] $2s^2 2p^2$
- **Si** [Ne] $3s^2 3p^2$
- **Ge** [Ar] $3d^{10} 4s^2 4p^2$
- **Sn** [Kr] $4d^{10} 5s^2 5p^2$
- **Pb** [Xe] $4f^{14} 5d^{10} 6s^2 6p^2$
- mayor diferencia de χ , de radio covalente y de EI entre C y Si
 - » orbitales con n = 2 muy contraídos \rightarrow sólo apantallados por los 1s; (mayor Z_{ef})
 - » pequeño tamaño átomo C → comportamiento singular cabeza de grupo

	C	Si	Ge	Sn	Pb
E.J. (kJ·mol ⁻¹):					
EI_1	1086	786	762	709	716
EI_2	2353	1577	1537	1412	1450
$EI_3^{}$	4620	3232	3302	2943	3081
$\mathrm{EI_4}$	6223	4356	4411	3930	4083
EI_5	37830	16090	9020	6974	6640
Electronegativi-					
dad Allred-R (χ)	2,54	1,92	1,99	1,82	1,85
radio covalente (pm)	77	118	122	140	154
densidad 20°C	3,513(diam)			$5,77(\alpha)$	
(g·cm⁻³)	2,2(graf)	2,33	5,323	$7,29(\beta)$	11,3


- 2.- Energías de Ionización, χ , radio covalente
 - C y Si \rightarrow EI₅ >> EI₄
 - menor diferencia en Ge, Sn y Pb ¿por qué?
 - » EI₅: Ge, Sn, Pb → pérdida electrón d
 - radio covalente → aumenta con Z, pero con irregularidades
 - Ge apenas aumenta respecto a Si (efecto 1^a serie transición)
 - Pb aumenta respecto a Sn, pero menos de lo esperado (contracción lantánida)
 - densidad → generalmente aumenta al descender en el grupo, ya que el aumento relativo de las masas atómicas es mayor que el del volumen

	C	Si	Ge	Sn	Pb
E.I. (kJ·mol ⁻¹):					
EI_1	1086	786	762	709	716
EI_2	2353	1577	1537	1412	1450
EI_3	4620	3232	3302	2943	3081
EI_4	6223	4356	4411	3930	4083
EI_5	37830	16090	9020	6974	6640
Electronegativi-					
dad Allred-R (χ)	2,54	1,92	1,99	1,82	1,85
radio covalente (pm)	77	118	122	140	154
densidad 20°C	3,513(diam)			$5,77(\alpha)$	
(g·cm ⁻³)	2,2(graf)	2,33	5,323	$7,29(\beta)$	11,3

2. Tendencias Grupales

3. Carácter metálico

- Aumenta al descender en el grupo
- Resistividad eléctrica
 - **■** C (diamante) **→** aislante
 - Si y Ge → semiconductores
 - Si → química no metálica
 - Sn y Pb → metales
 - baja resistividad eléctrica

band-gap (kJ/mol) (ΔE bandas conducción/valencia)

7,7

 \mathbf{C} Si

580

Ge

α-Sn β-Sn

106,8 64,2 Pb

0

(de: G. L. Miessler, D. A. Tarr, Inorganic Chemistry, 4th ed, Pearson Prentice Hall, 2011)

4. p.f.'s /Entalpías de atomización

2. Tendencias Grupales

- si los elementos de un grupo tienen estructuras similares
 - p.f.'s y p.e.'s reflejan la intensidad de las interacciones entre los átomos
- si las estructuras de los elementos son diferentes
 - se refleja acentuadamente en sus p. f.'s
- p. f.'s Grupo 14 → no muestran un patrón simple
 - disminuyen pero con iregularidades (Sn)
 - C, Si, Ge (estructura diamante) → p. f. elevado y disminuyendo de C a Ge
 - » característico enlace red covalente → no metal/semimetal
- si las estructuras de los elementos son diferentes,
 - $-\Delta H_{at}^{\ \ o}$ proporciona una estimación más precisa de la intensidad de las interacciones en estado sólido

	p. f. (°C)	p. e. (°C)	ΔH _{at} ° 298 K, (kJ·mol ⁻¹)	estructura del sólido	l
C	4100		717	diamante, red covalente	l
Si	1420	3280	456	red covalente tipo diamante	l
Ge	945	2850	375	red covalente tipo diamante	l
β-Sn	232	2623	302	red metálica cúbica compacta distorsionada	L
Pb	327	1751	195	red metálica cúbica compacta	l

2. Tendencias Grupales

5. Tendencia a formar cadenas y enlaces múltiples

- 1.- Catenación
 - capacidad de un elemento, E, para formar compuestos con enlaces E-E
 - Gr-14 → en la Naturaleza sólo el C presenta compuestos con cadenas
 - requisitos para la formación de cadenas estables:
 - -1) capacidad de enlace (valencia del elemento) ≥ 2
 - − 2) el elemento debe formar enlaces fuertes consigo mismo (E–E)
 - » al menos tan fuertes como con otros elementos
 - 3) inercia cinética del compuesto con enlaces E-E vs. otras moléculas o iones

	C=C 598	C≡C 813	С-Н 416	C-F 485	C-Cl 327	C-O 359	C=O 806	
Si-Si 226			Si-H 326	Si-F 582	Si-Cl 391	Si-O 466	Si=O 642	
Ge-Ge 186			Ge-H 289	Ge-F 465	Ge-Cl 342	Ge-O 350		
Sn-Sn 151			Sn-H 251		Sn-Cl 320			(adaptada de: C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 3 rd ed, Pearson Ed. Ltd, 2008)
- Energías d	le enla	ce (kJ	-mol ⁻¹)		Pb-Cl 244			10

5. Tendencia a formar cadenas y enlaces múltiples

2. Tendencias Grupales

- 1.- Catenación
 - gran tendencia del C a formar enlace C-C
 - orbitales con n = 2 muy contraídos (sólo apantallados por los 1s)
 - pequeño tamaño → solapamiento muy efectivo
 - solapamiento orbitales menos efectivo al descender en el grupo
 - energías de enlace E-X:
 - E-H → disminuyen al descender en el grupo
 - pero .. con halógenos → máximo en silicio: C-X < Si-X > Ge-X > Sn-X > Pb-X
 - » anomalía de C → pequeño tamaño conduce a repulsiones estéricas entre haluros

_									
	C-C 346	C=C 598	C≡C 813	C-H 416	C-F 485	C-Cl 327	C-O 359	C=O 806	Tendencia a formar cadenas?
	Si-Si 226			Si-H 326	Si-F 582	Si-Cl 391	Si-O 466	Si=O 642	– C >>> Si > Ge ~ Sn >Pb
	Ge-Ge 186			Ge-H 289	Ge-F 465	Ge-Cl 342	Ge-O 350	• tode	os los compuestos con cadenas Si–Si
	Sn-Sn 151			Sn-H 251		Sn-Cl 320		- t	termoquímicamente inestables
I	Energías	de enla	ice (kJ	-mol-1)		Pb-Cl 244			a de: C. E. Housecroft, A. G. Sharpe, c Chemistry, 3 rd ed, Pearson Ed. Ltd, 2008)

• 1.- Catenación

2. Tendencias Grupales

- todos los compuestos con cadenas Si-Si → termoquímicamente inestables
 - frente a procesos de disociación en los elementos, hidrólisis y oxidación
- compuestos C–C inestables frente a oxidación
 - pero inertes cinéticamente → elevada energía de activación
- las energías de enlace E–E y E–X disminuyen al descender en el grupo
 - pero las energías E-E disminuyen más rápidamente que E-O y otras
- ¿por qué los químicos estamos especialmente interesados en las reacciones de oxidación e hidrólisis?
 - porque son las más probables en este Planeta, ya que la atmósfera contiene oxígeno y vapor de agua

		Reacción	
Compuesto	disociación \rightarrow 2 M + 3 H ₂	hidrólisis \rightarrow MO ₂ + H ₂	oxidación $\rightarrow MO_2 + H_2O$
C_2H_6	$\Delta G^{\circ} > 0$ estable	$\Delta G^{\circ} > 0$ estable	ΔG° < 0 , pero cinéticamente inerte
Si_2H_6	$\Delta G^{\circ} < 0$	ΔG° < 0 hidrolizado por álcali	$\Delta G^{o} < 0$

• 2.- Formación de enlaces múltiples

- 2. Tendencias Grupales
- C gran tendencia a formar enlaces múltiples CC, CO, CN, ...
 - orbitales con n = 2 muy contraídos \rightarrow sólo apantallados por los 1s
 - fuerte solapamiento orbitales 2p
 - » pero prefiere formar 2 enlaces sigma C-C-C
 - solapamiento p-p menos efectivo al aumentar nº cuántico principal
- Silicio elemental → estructura diamante (no se conoce análogo de grafito)
- **C** con O prefiere? enlace múltiple
 - ¿Si con O? → enlace simple

C-C 346	C=C 598	C <u>=</u> C 813	C-O 359	C=O 806
Si-Si 226 Ge-Ge	Si=Si 310 Ge=Ge		Si-O 466 Ge-O	Si=O 642
186 Sn-Sn	270 Sn=Sn		350	
151 Pb-Pb < 100	190 I	Energías de	enlace (l	k J·mol⁻ ¹)

- SiO₂ y CO₂
 - "análogos" estequiométricos
 - pdes muy diferentes
- $^{\bullet}$ CO₂ → compuesto molecular
- SiO₂ (p.f. 1600°C, p.e. 2230°C)
 - red covalente polarizada
 - estructura infinita basada en unidades tetraédricas SiO₄

13

6. Estados de oxidación

2. Tendencias Grupales

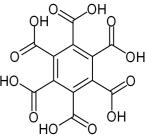
- ¿E.O. característico del grupo? → +4
 - enlaces esencialmente covalentes
 - también en Sn y Pb (con excepciones)
- E.O. $+4 \rightarrow$ se inestabiliza, vs. +2, al descender en el grupo
 - efecto del par inerte
 - par de electrones ns² se comporta como *interno*
 - CO reductor [no existen compuestos estables de Si^{II}]
 - Pb^{IV} oxidante fuerte
 - $-E.O. +2 \rightarrow el más estable para Pb$
- E.O. $-4 \rightarrow C$, Si, Ge (con metales electropositivos)
 - sólo C (mayor χ) \rightarrow compuestos *iónicos* con metales más electropositivos
 - que contienen aniones C⁴⁻ (carburo) o C₂²⁻ (acetiluro)

2. Tendencias Grupales

6. Estados de oxidación

- Conclusión:
 - EO +4 es el único EO(+) importante para C y Si
 - para Sn ambos EO's +4 y +2 son importantes
- (*) efecto del par inerte → es un efecto termoquímico ¿origen/explicación?
 - $^{\bullet} MX_2(s) + X_2(g) \rightarrow MX_4(s) \qquad (\Delta S^{\circ}_{r} < 0)$
 - como en los compuestos MX_4 el enlace es esencialmente covalente basta considerar que la formación del compuestos MX_4 implica:
 - -ruptura del enlace X-X y formación de 2 nuevos enlaces M-X
 - -pero la energía de enlace M-X se debilita al descender en el grupo 14
 - además se requiere promoción electrónica de 1 e⁻ ns para poder formar los enlaces
 (tal promoción no era necesaria en la formación de MX₂)
 - Conclusión → EO +4 se inestabiliza vs. EO +2 al descender en el grupo

15


7. Reactividad

2. Tendencias Grupales C, Si, Ge

- 1.- Tendencia general
 - reactividad → aumenta al descender en el grupo
 - al aumentar el carácter metálico
 - Silicio poco reactivo pero más que el C
 - Ge es ligeramente más reactivo que Si
 - Sn y Pb son los más reactivos
- 2.- Carbono
 - C diamante → extremadamente poco reactivo a t^a ambiente
 - C grafito → cinéticamente más reactivo (estructura en capas)
 - HNO₃(conc) oxida al grafito → ácido mellítico $[C_6(CO_2H)_6]$
 - ambos reaccionan con $O_2 \rightarrow pero$... a diferente t^a

(de: https://handwiki.org/wiki/ Chemistry:Mellitic_acid)

 $C(s) + O_2(g) \xrightarrow{\Delta} CO_2(g)$; grafito $t^a > 700^{\circ}C$, diamante $t^a > 900^{\circ}C$

- 3.- Reacciones generales C, Si, Ge
 - a) todos arden con aire a ta elevada

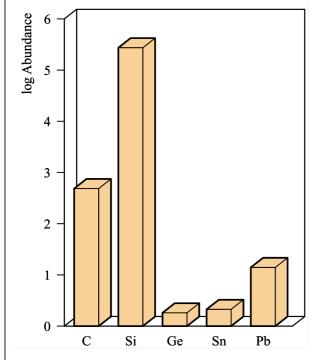
$$M(s) + O_2(g) \xrightarrow{\Delta} MO_2(g)$$

- c) HCl(conc) y en caliente:
 - no ataca al C, Si o Ge

• b) vapor de agua a ta elevada:

Si(s) + 2 H₂O(g)
$$\xrightarrow{\Delta}$$
 SiO₂(s) + 2 H₂(g)
C(s) + H₂O(g) $\xrightarrow{}$ CO(g) + H₂(g)

- d) HNO₃(conc):
 - oxida a C y Ge, pero no al silicio


- e) álcalis:
 - Si, Ge, reaccionan con álcalis → de forma diferente

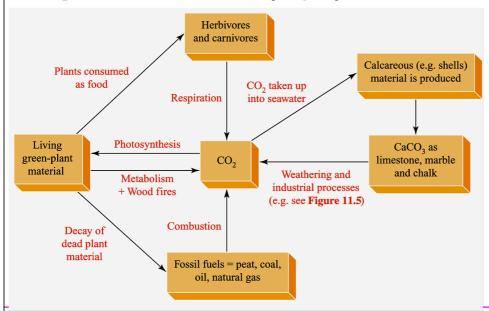
$$Si(s) + 4 OH^{-}(ac) \rightarrow SiO_4^{4-}(ac) + 2 H_2(g)$$

- Ge apenas es afectado por los álcalis acuosos
 - » atacado por álcalis fundidos → germanatos GeO₄⁴⁻
- f) reacciones con los halógenos
 - Si, Ge reaccionan directamente con los halógenos → MX₄

17

2. Tendencias Grupales

Abundancia relativa de los elementos del grupo 14 en la corteza terrestre (escala logarítmica). Las unidades de abundancia son partes por millón (ppm \equiv g/T).


8. Estado natural y abundancia

- Carbono
 - relativamente abundante en Universo
 - menos abundante en la Tierra (17º)
 - nativo y formando compuestos
 - depósitos de caliza CaCO₃, MgCO₃,petróleo, gas natural, CO₂
- Si → 2º más abundante en la Tierra
 - sílice y silicatos (oxocompuestos)
- Ge → posición 54°
- Sn → posición 49°
- principal mena → casiterita, SnO₂
- Pb → posición 36°
 - menas importantes → galena (SPb), anglesita PbSO₄, ...

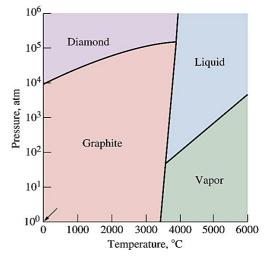
1. Estado natural. Ciclo del carbono

3. CARBONO

- C en estado elemental → diferentes variedades alotrópicas
 - grafito, diamante, estructuras macromoleculares (Fullerenos), ...
- combinado en forma de compuestos
 - depósitos de carbonatos (CaCO₃, MgCO₃), hidrocarburos, CO₂ (minoritario, 0,2%)

• constituyente de los seres vivos (0,01%)

(adaptada de: C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 3rd ed, Pearson Ed. Ltd, 2008)


19

2. Alotropía del carbono

3. CARBONO

- además de las variedades cristalinas clásicas (diamante y grafito)
 - nueva familia de alótropos → fullerenos
 - grafito del griego grafein = escribir
 - diamante del griego adamas = invencible
- grafito → el más estable en condiciones normales
- hay otras formas de C amorfo
 - hollín, carbón de coque, carbón activo, ...
 - C amorfo → grafito microcristalino con estructura parcialmente alterada

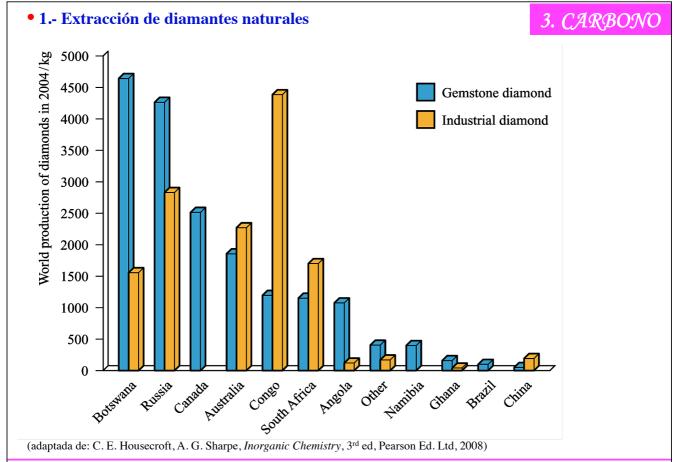
(adaptada de: R.H. Petrucci, W.S. Harwood, G.E. Herring, *General Chemistry*, 8th ed, Prentice-Hall, 2002)

3. CARBONO

2. Alotropía del Carbono

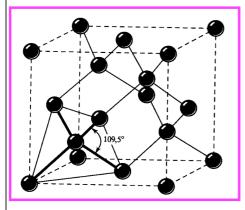
- 1.- Diamante
 - variedad polimórfica del carbono
 - existe en la Naturaleza: es metaestable
 - la forma estable → grafito

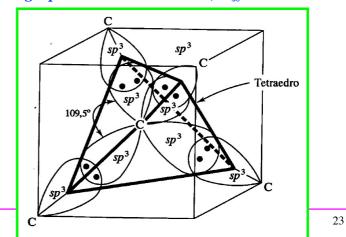
$$C(diamante) \longrightarrow C(grafito)$$


$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta H^{o} = -1.9 \text{ kJ/mol}; \ \Delta G^{o} = -2.9 \text{ kJ/mol} \ (\Delta S^{o} > 0)$$

- ¿por qué los diamantes no se transforman en grafito?
 - velocidad de transformación lentísima
 - » afortunadamente para el propietario
- el más grande: *El Cullinam* (25/01/1905) 621,2 g




3. CARBONO

- 1.- Diamante (p. f. elevado, 4100 °C)
 - enlace C−C covalente muy fuerte → red covalente tridimensional
 - sustancia más dura conocida (10 escala de Mohs)
 - bajo coeficiente de expansión térmica

- distancia (C–C) = 1,54 Å
 - » enlace simple
- $\text{ n. c.} = 4; \text{ ángulo } 109,5^{\circ}$
- enlace covalente C-C
 »solapamiento de híbridos sp³

- estructura y enlace en diamante:
 - cada átomo de C unido a otros 4 C
 - estructura abierta (n. c. = 4, tetraédrica)
 - agrupación de átomos de C, C_{∞}

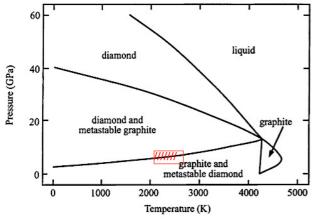
3. CARBONO

• 1.- Diamante

- direccionalidad del enlace covalente → frágil
 - posibilita su tallado según direcciones perfectamente definidas (joyería)
- fortaleza del enlace y ausencia de orbitales vacíos disponibles para ataque nucleofílico
 - inerte químicamente
- gran separación energética entre bandas de valencia y conducción
 - aislante eléctrico (ΔE ~ 580 kJ·mol⁻¹)
- rigidez de la estructura 3D
 - excelente conductor térmico (5 veces más elevada que Cu)
 - » red continua tridimensional infinita de enlaces covalentes → átomos C individuales tienen muy poca movilidad
 - » toda la energía calorífica aportada se transfiere directamente (en forma de movimiento molecular) a través de todo el diamante
 - » herramientas de corte al diamante no se calientan
- no posee electrones susceptibles de ser excitados por la radiación visible
 - -incoloro (no siempre: puede contener trazas de impurezas)

• 1.- Diamantes sintéticos

3. CARBONO


- además del uso en joyería, los diamantes son esenciales en la industria
 - corte, pulido, dispositivos electrónicos...
- diamantes naturales de calidad industrial → insuficientes
- económicamente justificado obtener diamantes a partir de grafito
- transformación grafito → diamante a TPEA
 - C (grafito) → C (diamante) $\Delta G^{\circ} = 2.90 \text{ kJ·mol}^{-1}$; $\Delta H^{\circ} = 1.9 \text{ kJ/mol}$; ($\Delta S^{\circ} < 0$)
- densidad diamante $(3.51 \text{ g} \cdot \text{cm}^{-3}) > \text{grafito } (2.26 \text{ g} \cdot \text{cm}^{-3})$
 - Le Chatelier → se podrían obtener diamantes ¿a presión alta o baja?
 - para superar elevada energía de activación → temperatura elevada

Property	Diamond	Graphite	(*) C; DA C
Density (g cm ⁻³)	3.513	2.260	(*) Si P↑ se favorece
Electrical resistivity (Ω m)	10 ¹¹	1.375×10^{-5}	ia rase mas ordenada
Standard molar entropy (J $mol^{-1} K^{-1}$)	2.377	5.740	
C_p at 25° C (J mol ⁻¹ K ⁻¹)	6.113	8.527	(de: G. L. Miessler, D. A. Tarr, <i>Inorganic Chemistry</i> , 4 th ed,
C — C distance (pm)	154.4	141.5 (within layer) 335.4 (between layers)	Pearson Educ. Inc., 2011)
Source: I. Elmsley, The Elements, Oxford University	25		

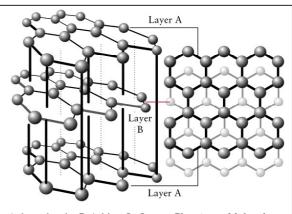
• 1.- Diamantes sintéticos

3. CARBONO

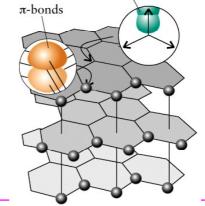
- se obtienen diamantes artificiales (tamaño: 0,05–0,5 mm) en cantidad suficiente para satisfacer la demanda industrial
 - USA líder mundial producción diamantes artificiales (en 2001 → 65000 Kg)

- la compañía japonesa Summitono Electric obtiene diamantes de calidad gemológica
 - condiciones de síntesis:
 - » alta temperatura (1800 °C),
 - » alta presión, 70 kbar (= 7 GPa)
 - » catalizador de Ni.

(adaptada de: T. W. Swaddle, Inorganic Chemistry, Academic Press, 1997) • films de diamante:

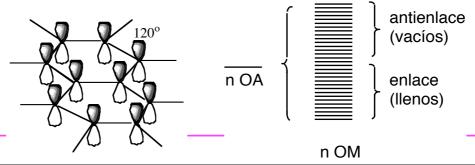

- para algunas aplicaciones industriales conviene tener un material de la dureza del diamante en forma de película
 - » tecnología de *films de diamante* → enorme potencial para los *chips* de microprocesadores ya que no se dañan por el calor producido

(*) 1 GPa = 10^9 Pa; 100 kPa = 10^5 Pa = 1 bar; 1 GPa = 10^4 bar; 7 GPa = 70 kbar $\approx 70 \cdot 10^3$ atmósferas 26


- 2.- Grafito
 - Estructura → láminas de átomos de C
 - lámina formada por anillos de 6 átomos de C unidos covalentemente
 - -d(C-C) 1,41 Å en la lámina
 - » enlace con carácter π
 - -láminas alternadas: A, B, A, B, ...
 - » d(C---C) 3,35Å entre láminas
 - » interacciones van der Waals

- tres enlaces σ a 120°
 - » hibridación sp²
- sistema de enlaces π deslocalizado en el plano

(adaptadas de: P. Atkins, L. Jones, *Chemistry: Molecules, Matter and Change*, 4^{th} ed, W. H. Freeman and Co, 2000)


27

2. Alotropía del Carbono

3. CARBONO

 sp^2 σ -bonds

- 2.- Propiedades del Grafito
 - alta conductividad eléctrica 2–D \rightarrow electrones π deslocalizados
 - conductividad según los planos
 - » conductor en dirección capas (3·10⁴ S·cm⁻¹)
 - » aislante en la dirección perpendicular a capas
 - material refractario (p. f. = 3845, p.e. = 3927°C)
 - fuertes enlaces covalentes
 - propiedades ópticas: grafito es negro
 - transiciones electrónicas entre niveles de energía de la banda de valencia y de conducción

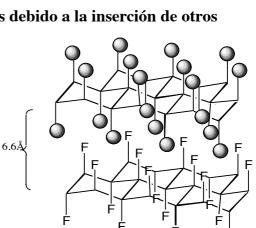
120°

2

3. CARBONO

- 2.- Propiedades del Grafito
 - blando, lubricante
 - interacciones intercapas
 - » fuerzas débiles de van der Waals
 - ¿separación entre capas? grande
 - permite inclusión de moléculas de gases entre capas
 - más estable que el diamante pero cinéticamente más reactivo
 - debido a cierta aromaticidad, así como la gran separación entre las capas y debilidad de las fuerzas entre capas
 - reacciona con amplia variedad de sustancias
 - p. ej. con los alcalinos, halógenos, haluros alcalinos
 - formando compuestos de intercalación donde esencialmente se conserva la estructura del grafito
 - » átomos o iones se introducen entre capas en relación bastante estequiométrica

20


KC8

2. Alotropía del Carbono

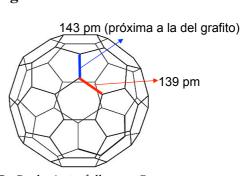
- 2.- Compuestos del Grafito
 - en condiciones suaves puede formar dos grandes tipos de compuestos
 - compuestos de intercalación del grafito:
 - » las capas grafíticas mantienen la nube π y las propiedades asociadas a la nube π

» pero ... aumenta la separación entre capas debido a la inserción de otros compuestos, átomos o iones

- compuestos en los cuales se destruye la nube π deslocalizada, p. ej. \rightarrow (CF)_n
 - » grafito reacciona en atmósfera de F_2 a 400–500 °C, dando (CF)_n ¿n.c.(C)? 4
 - » (CF)_n ¿conductividad eléctrica? no
 - » (CF)_n ¿color? cambia a casi blanco
 - » las capas dejan de ser planas

3. CARBONO

- 2.- Obtención y usos del Grafito
 - a) países productores de grafito (minería)
 - principales productores → China, Siberia y Corea (ambas)
 - Canadá (Ontario) → grandes depósitos de grafito
 - b) obtención: proceso Acheson
 - materia prima → carbón amorfo
 - » carbón de coque en polvo
 - se cubre con capa arena para evitar oxidación a CO₂/CO
 - horno eléctrico trabaja a 2500 °C
 - c) usos del grafito
 - moderador en reactores nucleares
 - como electrodo
 - como lubricante mezclado con aceites
 - mezclado con arcilla como material para fabricar minas para lápices
 - » a mayor proporción de arcilla mayor dureza de la mina

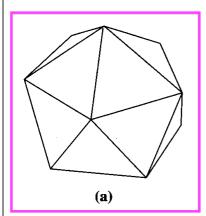

31

2. Alotropía del Carbono

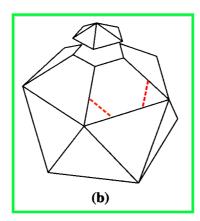
3. CARBONO

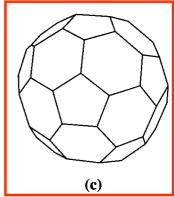
- 3.- Fullerenos (descubiertos hace ~35 años)
 - familia de estructuras donde los átomos de C están dispuestos en forma esférica o elipsoidal
 - Buckminsterfullerene C_{60} → primer alótropo de la serie (1985)
 - el más fácil de preparar
 - combinación de anillos de C hexagonales y pentagonales
 - » 12 pentágonos unidos a 20 hexágonos
 - » cada C forma parte de 1 pentágono y 2 hexágonos
 - » tipo balón de football
 - R.F. Curl, H.W. Kroto y R.E. Smalley
 - » Nobel de Química de 1996
 - se han sintetizado otros fullerenos con nº par de átomos C, incluso mayor de 100
 - $-C_{70}, C_{76}, C_{84}, ...$
 - se piensa que pueden existir con centenares de átomos (superfullerenos)

(*) d (C–C)_{diamante} = 154 pm // d (C–C)_{grafito} = 141 pm



7 Buckminsterfullerene, C₆₀


ullet 3.- Fullerenos: Descripción de la estructura de ${
m C}_{60}$

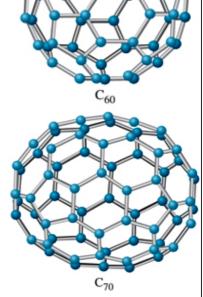

3. CARBONO

- a) referencia: icosaedro
 - 12 vértices
 - 20 triángulos equiláteros
 - 5 triángulos en cada vértice

- b) corte o truncamiento de un vértice
 - deja al descubierto una cara pentagonal

- c) truncamiento de los 12 vértices
 - aparecen 12 caras pentagonales
 - los 20 triángulos se convierten en 20 hexágonos

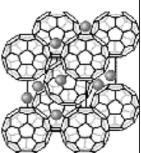
(adaptada de: R.H. Petrucci, W.S. Harwood, G.E. Herring, General Chemistry, 8th ed, Prentice-Hall, 2002)


--

2. Alotropía del Carbono

• 3.- Fullerenos

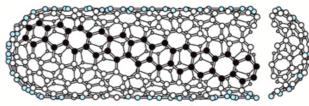
- ullet $C_{60}(s\'olido)$: unidades C_{60} se empaquetan en una red cúbica centrada en las caras
 - molécula C₆₀ → átomos de C unidos mediante enlaces covalentes
 - − moléculas C_{60} → unidas mediantes fuerzas débiles de dispersión de London
- fase sólida → color negro y subliman al calentarlos
- bajas densidades (~1,5 g/cm³); no conducen electricidad
- muy solubles en disolventes no polares como hexano o tolueno → fuerzas dispersión débiles
 - dando disoluciones coloreadas
 - » C₆₀ disolución de color intenso púrpura-magenta
 - » C₇₀ disolución de color vino tinto
 - » C₇₆ disolución de color amarillo-verdoso brillante
 - » C₃₆ disolución de color amarillo-dorado


3. CARBONO

(de: G. L. Miessler, D. A. Tarr, *Inorganic Chemistry*, 4th ed, Pearson Educ. Inc., 2011)

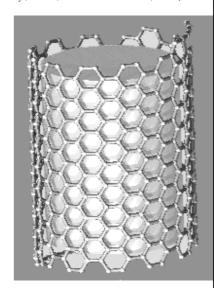
3. CARBONO

- 3.- Fullerenos: reactividad
 - Química de fullerenos → tema de intensa investigación
 - con muchas aplicaciones de futuro
 - pueden presentar reacciones diversas:
 - ataque de átomos o grupos de átomos en su superficie
 - » C_{60} reaccciona con F_2 dando $C_{60}F_{60}$ incoloro
 - » reacciones redox con metales grupo 1 o 2: p.ej. con rubidio se forma Rb_3C_{60} ([Rb^+] $_3[C_{60}^{3-}$]) superconductor a T< 28 K
 - introducción de átomos en el interior de la cavidad
 - » La(III)C₈₂: en el interior del fullereno hay un ión La³⁺
 - C₆₀ (y otros) absorben radiación visible
 - la forma excitada ${\rm C_{60}}^*$ absorbe luz mucho más eficientemente que la no excitada ${\rm C_{60}},$
 - » convirtiendo la radiación electromagnética en calor
 - C₃₆ es el fullereno estable más pequeño (es el más reactivo)
 - tensión de los enlaces para cerrar una esfera tan pequeña



K₃C₆₀

35

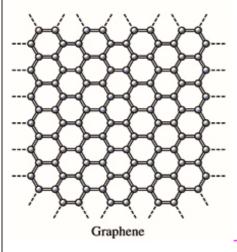

2. Alotropía del Carbono

- 4.- Nanotubos
 - descubiertos en 1991
 - Sumio Iijima (Japón)
 - estructura → relacionada con grafito
 - paquetes minúsculos de láminas de grafito,
 - enrrollados en forma de tubo,
 - y con medio fullereno cerrando cada extremo
 - » diámetro variable \rightarrow 0,5 nm a 100 μ m
 - una fibra infinita con interesantes aplicaciones
 - nanotubos → extraordinariamente resistentes
 - » 100 veces más que una malla análoga de acero
 - » átomos de C unidos por enlaces covalentes
 - enorme potencialidad en el campo de sensores y catalizadores

A carbon nanotube

(de: G. L. Miessler, D. A. Tarr, *Inorganic Chemistry*, 4th ed, Pearson Educ. Inc., 2011)

3. CARBONO


- 4.- Nanotubos
 - una fibra infinita con interesantes aplicaciones
 - nanotubos abiertos por los extremos
 - » sistemas potenciales de almacenamiento reversible de $H_2(g)$
 - Electrónica molecular
 - » las fibras son conductoras debido a la red de enlaces π deslocalizados
 - » según su eje tienen una conductividad comparable a la de los metales
 - » esta propiedad se puede aprovechar para fabricar pantallas ultraplanas para ordenadores
 - inconveniente actual
 - síntesis muy cara
 - calentar grafito en atmósfera inerte a unos 1200°C
 - » condiciones patentadas
 - grafito, fullerenos y nanotubos
 - basados en anillos hexagonales de átomos de carbono

37

2. Alotropía del Carbono

3. CARBONO

- 5.- Grafeno
 - ¿a qué se denomina grafeno?
 - una única lámina de anillos hexagonales
 - obtenido en 2004 → investigadores Universidad de Manchester (UK)
 - ¿por qué no puede llamarse grafito?
 - porque el grafito está definido como estructura tridimensional

- el grafeno es totalmente transparente
 - lámina de espesor monoatómico
- se comporta como semimetal
 - pds eléctricas y magnéticas inusuales
- muy resistente
 - átomos unidos por enlace σ y sistema π conjugado
- aplicaciones en desarrollo

3. CARBONC

- 6.- Otras formas del carbono parcialmente cristalino
 - · Carbón de coque:
 - forma impura de carbono
 - utilizado en gran cantidad → ~ 500·10⁶ T/año
 - » para las principales aplicaciones del carbono
 - » como agente reductor y fuente de energía
 - ¿cómo se obtiene?
 - » calentando carbón en ausencia de aire
 - » se rompe la estructura compleja del carbón
 - » destilan diversos hidrocarburos
 - » queda un material poroso de baja densidad, plateado de aspecto casi metálico
 - consiste en microcristales de grafito con pequeñas cantidades de otros elementos unidos en su estructura
 - » particularmente hidrógeno

39

• 6.- Otras formas del carbono parcialmente cristalino

- 3. CARBONO
- obtenidas por pirólisis o combustión parcial de hidrocarburos
- Negro de Carbón:
 - carbono finamente pulverizado (micrografito impuro)
 - utilizado en gran cantidad
 - » se mezcla con el caucho para reforzar los neumáticos
 - » fabricación de pigmentos, ...
- Carbón activo:
 - consiste en granos de carbono microcristalino
 - se utiliza como agente de adsorción
 - » debido a su gran superficie específica ($\sim 10^3 \, \text{m}^2 \cdot \text{gr}^{-1}$)
 - » decoloración del azúcar, eliminar impurezas en diversas reacciones del lab, en filtros de gases,...
- Fibra de Carbono
 - se utiliza para endurecer los plásticos
 - » fabricación de raquetas de tenis, ...

3. Isótopos del Carbono

3. CARBONO

• 3 isótopos \rightarrow ¹²C (98,89%), ¹³C (1,11%) y ¹⁴C (trazas, radiactivo)

	¹² ₆ C	¹⁴ ₆ C
n/p	1,0	1,33

- isótopo ¹⁴C
 - isótopo radiactivo de vida media corta → 5,7·10³ años (¿tipo emisión?)
 - presente en todos los organismos vivos

$$^{14}_{6}C \rightarrow ^{0}_{-1}\beta + ^{14}_{7}N$$

- con vida media corta ¿por qué está presente aún en la Tierra?
 - se produce continuamente en la alta atmósfera por reacción de los neutrones de los rayos cósmicos y átomos de nitrógeno

$$^{14}_{7}N + ^{1}_{0}n \rightarrow ^{14}_{6}C + ^{1}_{1}H (*)$$

- Datación por ¹⁴C
 - ¹⁴C se utiliza en el *datado* de muestras de origen biológico
 - la técnica del datado mediante carbono ha sido utilizada como método radioquímico cronométrico
 - para estimar la edad de objetos arqueológicos de origen biológico
 - (*) en neto equivale a la aceptación de 1e- por el 147N, luego Z disminuye en una unidad

41

3. Isótopos del Carbono

3. CARBONO

- Datación por ¹⁴C
 - Fundamentos de la técnica
 - átomos de 14 C reaccionan con O_2 → moléculas radiactivas 14 C O_2
 - » $^{14}\mathrm{CO}_2$ se incorpora a las plantas via la fotosíntesis
 - » seres vivos que comen plantas y los que se comen a estos seres vivos
 - » todos contienen la misma proporción de $^{14}\mathrm{C}$
 - cuando ser vivo muere → cesa ingestión de 14 C → se inicia desintegración del 14 C
 - » a partir de ese momento la escasa radioactividad de esta materia orgánica debido a la presencia del ¹⁴C empieza a decaer exponencialmente permitiendo a los arqueólogos estimar la edad del objeto en cuestión
 - permite datar un "objeto" cuya antiguedad esté entre 10³ y 20·10³ años
 - » midiendo la cantidad de ¹⁴C existente en una muestra del mismo
 - W. F. Libby, Premio Nobel 1960 por el desarrollo de esta técnica